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Thermal Excitation of Modes
in a Non-neutral Plasma

Roy W. Gould

California Institute of Technology, Pasadena, CA 91125

Abstract. We examine theoretically the thermal fluctuations in a non-neutral plasma, as
observed on a segmented electrode surrounding the plasma, using the Nyquist theorem. The
fluctuation spectrum is peaked at frequencies which correspond to modes of the plasma.
Measurement of these fluctuations and of the input admittance of the plasma in the vicinity of
one of the mode resonances can be used to give a completely experimental, and non-
destructive, measurement of the plasma temperature. Since some of the modes are negative
energy modes and exhibit negative absorption due to the plasma rotation, a direct application of
the Nyquist theorems will not give correct results for the non-axisymmetric modes. This
problem is circumvented by first calculating the fluctuations in a frame rotating with the plasma
and transforming to the laboratory frame. This resuits in a modification of Nyquist's theorem.
Measurement issues are discussed.

INTRODUCTION

Recent experimental measurements[1] of the fluctuations in a cylindrical pure
electron plasma show that the fluctuation spectrum is peaked at frequencies of the
Trivelpiece-Gould modes[2] and that they are thermal in origin. Measurements are
made by observing the frequency spectrum of the fluctuating signal on a "patch"
electrode which is part of the conducting cylinder which surrounds the plasma. We
show the situation schematically in Figure 1. We show the field lines of a few
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FIGURE 1. Charged particles in a cylindrical conducting cylinder.
Field lines to the wall are indicated and arrows indicate the particle velocity.
Fluctuations of the charge on patch result in a current /(w) in the external circuit.
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selected particles. They terminate on charges which reside on the conducting wall at
r =b. As the particles move, these wall charges change so that there are fluctuating
charges and currents induced on the wall. We show a small patch used to measure the
fluctuations. We want to find the fluctuating charge on the patch or, alternatively, the
fluctuating (displacement) current which flows to the patch.

There are various methods by which fluctuations can be calculated. In thermal
equilibrium, the principle of detailed balance says that emission and absorption must
be balanced, so that one can obtain the emission from a knowledge of the absorption
and the temperature. Nyquist's Theorem([3] is a well-known application to electrical
circuits which relates thermal fluctuations to the dissipative part of the admittance or
impedance functions of an electrical circuit. This theorem was later generalized to
Hamiltonian systems by Callen and Welton[4] and applied to a wide class of
dynamical systems. It is called the generalized Nyquist theorem, or the fluctuation-
dissipation theorem. These methods require a knowledge of the input admittance of
the patch. In plasmas, fluctuating quantities can also be calculated from two-particle
distribution functions, or using Rostoker's dressed test particle approach[5]. The
latter approach is not limited to systems in thermodynamic equilibrium (although they
must be stable) but is harder to apply except in the most simple situations (e.g.
spatially uniform plasmas).

This paper is divided into two parts: a discussion of the application of Nyquist's
theorem to the axisymmetric (m = 0)modes, then a discussion of the non-
axisymmetric (m # 0) modes, some of which are negative energy modes to which
Nyquist theorem cannot be applied directly. Instead, we calculate the fluctuations in
the rotating frame using Nyquist's theorem, where all modes are positive energy
modes. We then transform this result to the laboratory frame. This leads to a
modification of the Nyquist result, essentially an extension of Nyquist's theorem to
rotating systems.

NYQUIST'S THEOREM

Nyquist's theorem relates the mean-square fluctuations to the real part of the
admittance of electric circuit, Y(w) = I(w)/V(w). As seen from the coaxial
connector in Figure 1, we can view the plasma as an electric circuit which has an
admittance, Y,(w), which describes the linear response of the plasma. We have
previously discussed[6] the properties of Y,(w) in connection with the transfer of
angular momentum and energy to a plasma through the excitation of non-
axisymmetric Trivelpiece-Gould modes. This function has simple poles at each of the
mode frequencies. Y,(w) is also a quantity which can be measured experimentally. It
reflects the properties of the plasma and we shall assume that it is at the temperature
of the plasma, T},. Accordingly, we have the equivalent electrical circuit of Figure 2,
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FIGURE 2. (a) Norton Equivalent Circuit with a short circuit,
(b) Norton Equivalent Circuit with a load admittance, Y;

in which the effect of the thermal fluctuations of the circuit are represented by a

current generator with mean square current |I2,(w)| in frequency range dw

|12 (w)| = 2£T, Re{Yy(w)}dw D
in parallel with Y, (w), as illustrated in Figure 2.

Near one of the mode frequencies where the plasma can be resonantly excited,
Y, (w) has a simple pole at the mode frequency so that

V() = oy @
where w,; and .., are the frequency and line width of the mode[6]. R,cs is the
residue at the pole and depends upon the sector position and dimensions, as discussed
later in the paper. Note that the admittance is real and equal 10 Ryes/%yes at line
center. Furthermore, |I fc(w)‘ has a Lorentzian lineshape.

The basic idea is to measure both the fluctuation spectrum, e.g. the mean-square
current flowing in the load admittance, and the input admittance and then to use Eq. 1
to determine the plasma temperature. A very important point here is that the external
load affects the measurement and must be properly taken into account in interpreting
the measurements. Note that the current flowing through the load, I(w), is generally
less than the short-circuit current I,.(w) by the factor Yj(w)/[Yi(w) + Yp(w)] and the
voltage across the load is V(w) = I{w)/Y;(w). The external load will, in general,
introduce additional mode damping and make an additive contribution to 4., thus
increasing the linewidth. Since the load is not, in general, at the same temperature as
the plasma it may also cool the mode slightly. The mode is thermally excited by the
particles at T,, but also cooled by an external load at a lower temperature, 7;. The
mode temperature is determined by a competition between these processes.
Furthermore, if not all parts of the system are at temperature T}, then the measured
temperature will be a weighted average temperature, weighted according to the
dissipation of the various parts. Thus the copper electrodes, which have very little
dissipation, will not affect the measured temperature significantly. If there are radial
temperature gradient (electrons equilibrate along field lines very quickly but not
necessarily across field lines) we expect observed temperature to be an average
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temperature, weighted according to where the dissipation occurs. Since the m =0
and m = 2mode fields have different radial dependences, one might be able to
determine whether a radial temperature gradient exists from measurements using two
different modes.

NON-AXISYMMETRIC MODES AND NEGATIVE ABSORPTION

In thermal equilibrium emission is related to absorption, and fluctuations to
dissipation. The axisymmetric modes are all positive energy modes and the Nyquist
theorem works fine. However some of the non-axisymmetric modes are negative
energy modes, i.e. their excitation releases energy from the plasma and they exhibit
negative dissipation. Recall that the m = 1 diocotron mode can be destabilized by
attaching a resistor to the patch[7], and that the damping of the m = 2diocotron
mode is reduced by attaching a resistor to the patch[8). It is the modes whose
azimuthal phase velocity are less than the rotation angular velocity, 0 < w/m < wy,
which we shall refer to as the slow modes, which are negative energy modes. Their
excitation releases some of the energy of rotation. The real part of the patch input
admittance associated with modes in this frequency range is negative. Nyquist's
theorem (and the fluctuation-dissipation theorem) can not be applied to such a
situation. Yet we expect the plasma to be in thermal equilibrium if these modes are
not destabilized.

The reason for this paradox is the nature of the equilibrium. In making the case
for thermal equilibrium, it is generally assumed that the walls are smooth, the system
is axisymmetric, and angular momentum and energy are constants of the motion[9].
The equilibrium which results is very special, the plasma is rotating as a whole and
has angular momentum. For some purposes, including the discussion of thermal
fluctuations, it is more appropriate to view the plasma in the rotating frame, in which
the plasma appears stationary. In this frame the plasma has no negative energy
modes. We expect that the dynamics will be the same in either frame, except for the
coordinate transformation. The cffect of transforming to the rotating frame
introduces a uniform rigid neutralizing background charge. This situation is
frequently referred to as the one-component-plasma (OCP).

We can apply the Nyquist theorem (or fluctuation-dissipation theorem) in the
rotating (primed) frame, i.e. to the OCP. For this purpose we will not consider a
patch electrode, but will instead express the potentials and electric field at the wall
(r = b) in terms of their Fourier components (with k = nw/L),
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We calculate the fluctuations of the various Fourier components in the rotating
frame and then transform that result to the laboratory (unprimed) frame. The




frequencies of the fluctuations will be Doppler shifted: ' =w— 1w, or
w = ' + mw,, where w, is the rotational angular velocity. The mode frequencies
wmnp are also Doppler shifted by the rotation so that w,,.,,, = mnp + mw,.

We imagine that a small potential (one Fourier component) is applied at » = b and
that this produces a corresponding Fourier component of the radial electric field at
r = b which is proportional to the applied potential. We define the linear response
function, or susceptibility x},.(w"), of the plasma[6] as the ratio of the radial electric
field produced to the potential which causes it, i.e.

g

Lom = — X (W) % ©)

To apply Nyquist theorem, we need a current to go along with the potential. For this
purpose we define a displacement current at the wall I}, = — iw'e,S E!,,, . The
complex power delivered to the plasma is

P= %fSiw,eOE;* d),* ds = %ileOSkZ,Elkm ;:m = ZZIkmd)km’
'm

where S = 2mbL is the total area of the cylinder, I}, is the current, and * denotes the
complex conjugate. Because E, . is proportional to ¢}, I;.,, is also proportional to
k- Thus

Illcm — [ zu/eo km] ¢km YI:m ¢’km (4)

Y/ .is the admittance of one Fourier component which we shall use in Nyquist's
theorem to determine the fluctuation in electric field at the wall, and the
corresponding fluctuating current and wall surface charge density in frequency range
duw' are:

|Tm (@) = 26T Re{Y}, ()} dw'
lO’km(w')l wle2 |Ikm(w )| I{T*‘L Im{ka w)}dw

I m{%ﬂ} is always positive because the system is in equilibrium in the rotating
frame and therefore stable. The fluctuations are the same in both frames, except for
Doppler shift of frequenciesw/ = w — m w;. The linear response function is the same
in both frames except for Doppler shift of frequencies, i.e. Xim(w) = Xim(W').
Finally, the fluctuating wall charge in the laboratory frame is

|okm(w)|® = 2kT ;;Im{&m—‘“’——'"‘”'l}dw )

From the Fourier components of the _ﬂuctuatmg charge we can calculate the
fluctuating patch current when it is short-circuited
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I, = uuf‘, 0dS = —iwS, Y FimOkm ,

km

where S, is the patch area and Fj,,is a patch shape factor ( < 1). The mean square
2, is therefore

lIsc(w)|2 =2 wfo EIFLmI Im{

km

X (w — mw,) }dw . (6)

W=k,

Direct calculation of the patch admittance in the lab frame gives
Yp(w) “"" ZlFLHll ]m{ anz(w)} (7)

Patch fluctuations are no longer simply related to patch admittance. However,
Equation (6) is much simpler when only one azimuthal wave number contributes
significantly to the admittance (for example, near the resonance of a mode). In this
case

[Lee)|* = 28T Re{ 4 Yy(w)}dw ®)

Thus evenwhen Re{Y},(w)}<0 (for potentially unstable modes) we can obtain the
fluctuation level in thermal equilibrium. This result is very similar to the Nyquist
result, the difference being that the factor - appears. This factor is negative
whenever Re{Y,(w)}is negative, so that the product is always positive. Notice
however that this factor is important even for the positive energy non-axisymmetric
modes (when both factors are positive). It reflects the effect of rotation on the
magnitude of the fluctuation spectrum.

DISCUSSION

To determine the plasma temperature, measure the fluctuating voltage [V'Z(w)]
across the load admittance near one of the mode resonances with a load Yj{w)
connected to the patch. Also measure the input admittance of the plasma Y,(w ) at
very low signal level so as not to drive the plasma mode into the nonlinear regime.
This measurement can be done by measuring the complex reflection coefficient of the
plasma with a 502 directional coupler, converting the measured reflection coefficient,
r(w), to the complex admittance using! Y(w)/Y, = [1 — r(w)]/[1 + r(w)], then using
the expression

|V2(w)| = 4kT, Re{—2—Y,(w)}dw ! |Yi(w + Yy(w)|’ )

W,

I. The loci of both Y'(w) and r(w) versus w are circles in the complex plane. This property can be
useful in fitting experimental data.
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to obtain the plasma temperature T},. This assumes that one mode dominates the
fluctuation spectrum and the plasma admittance. For the m = 0 modes the new
factor w_t;’wr is unity, but for all non-axisymmetric modes this factor must be taken
into account.

In making measurements it is important that the load admittance not destabilize
any of the negative energy modes. An axisymmetric patch does not couple to the
negative energy modes so this is not an issue. However if the patch is not
axisymmetric, the real part of the load admittance should be very small at the
frequencies which might lead to destabilization of any negative energy modes. There
must be no, or very little, growth of these modes prior to or during a measurement.
This can be accomplished with a capacitive load, which will only cause a small

frequency shift of the mode.

CONCLUSIONS

The thermal equilibrium of a non-neutral plasma is an exceptional kind of
equilibrium. It has angular momentum and energy due to its rotation and it is not in
thermal equilibrium with the outside world. However, it is in thermal equilibrium in
a rotating frame when there are no non-axisymmetric perturbations so that the system
has constant angular momentum. A patch electrode which produces only
axisymmetric fields does not break the angular momentum constraint and does not
destroy the equilibrium. Such a patch electrode can be use to weakly excite the
axisymmetric modes of the plasma and to measure the thermal fluctuations of these
modes without destroying the thermal equilibrium of the plasma. This makes possible
a non-destructive, purely experimental, measurement of the plasma temperature using
the Nyquist theory of fluctuations associated with these modes in thermal equilbrium.

On the other hand, the slow non-axisymmetric modes have negative energy and
exhibit negative resistance and negative absorption. Nyquist's theorem of fluctuations
can not be applied directly to these modes because the real part of their input
admittance is negative. However, we have shown here that it is still possible to relate
the fluctuations associated with non-axisymmetric modes to the real part of the input
admittance, even when the latter is negative! In doing so, we have derived a modified
Nyquist theorem for rotating equilibria. In this new result their appears an additional
factor

w/(w —mw,),

which is negative for the negative energy slow modes for which the real part of the
patch impedance is negative. For the axisymmetric modes, this new factor is unity
and we recover the usual Nyquist result.

We obtained this result by calculating the fluctuations in the frame rotating with
the plasma, where the plasma is in thermal equilibrium and then transforming the
result to the laboratory frame. In the rotating frame all modes are stable and none are

269




negative energy modes. Although the results of this paper were derived for cylindrical
plasmas, it is clear they apply as well to spheroidal plasmas[10].

Finally, it should be possible to observe the fluctuations associated with non-
axisymmetric modes, and to use them to determine the plasma temperature.
However, in dealing with non-axisymmetric patches and modes, it is important that
the load admittance connected to the patch not have a significant real part, else a
negative energy mode may be destabilized and slowly grow. This can be achieved by
using a capacitive load, whose effect is to shift the mode frequency very slightly.
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